塞尔维亚热力工程师协会
期刊
会议
图书
作者:Sheng Zhang , Mingying Liu , Luyao Zhang
来源:[J].Thermal Science(IF 0.838), 2016, Vol.20 (3), pp.789-792塞尔维亚热力工程师协会
摘要:In this paper, variable separation method combined with the properties of Mittag-Leffler function is used to solve a variable-coefficient time fractional advection-dispersion equation with initial and boundary conditions. As a result, a explicit exact solution is obtained. It is ...
作者:Sheng Zhang , Jiahong Li , Luyao Zhang
来源:[J].Thermal Science(IF 0.838), 2016, Vol.20 (3), pp.881-884塞尔维亚热力工程师协会
摘要:In this paper, a direct algorithm of the exp-function method is proposed for exactly solving non-linear evolution equations. To illustrate the validity and advantages of the algorithm, the Korteweg-de Vries and Jimbo-Miwa equations are considered. As a result, exact solutions are...
作者:Sheng Zhang , Ran Zhu , Luyao Zhang
来源:[J].Thermal Science(IF 0.838), 2016, Vol.20 (Suppl_3), pp.S689-S693塞尔维亚热力工程师协会
摘要:In this paper, a variable-coefficient time fractional heat-like and wave-like equation with initial and boundary conditions is solved by the use of variable separation method and the properties of Mittag-Leffler function. As a result, exact solutions are obtained, from which some...
作者:Sheng Zhang , Xudong Gao
来源:[J].Thermal Science(IF 0.838), 2017, Vol.21 (4), pp.1607-1612塞尔维亚热力工程师协会
摘要:Constructing analytical solutions for non-liner partial differential equations aris-ing in thermal and fluid science is important and interesting. In this paper, Hiro-ta's bi-linear method is extended to a new generalized Ablowitz-Kaup-Newell-Se-gur hierarchy which includes heat ...
作者:Sheng Zhang , Dongdong Liu
来源:[J].Thermal Science(IF 0.838), 2017, Vol.21 (4), pp.1613-1619塞尔维亚热力工程师协会
摘要:Differential-difference equations are often considered as an alternative approach to describing some phenomena arising in heat/electron conduction and flow in carbon nanotubes and nanoporous materials. Infinite many conservation laws play important role in discussing the int...
作者:Sheng Zhang , Qianan Zong
来源:[J].Thermal Science(IF 0.838), 2018, Vol.22 (4), pp.1621-1628塞尔维亚热力工程师协会
摘要:Constructing exact solutions of non-linear PDE is of both theoretical and practical values. In this paper, a modified F-expansion method is proposed to construct exact solutions of non-linear PDE. To illustrate the validity and advantages of the proposed method, a (3+1)-D potenti...
作者:Sheng Zhang , Yuanyuan Wei , Bo Xu
来源:[J].Thermal Science(IF 0.838), 2019, Vol.23 (3A/2019), pp.1425-1431塞尔维亚热力工程师协会
摘要:Kadomtsev-Petviashvili equation is a mathematical model with many important applications in fluids. In this paper, a local fractional Kadomtsev-Petviashvili equation with Lax integrability is derived and solved by extending Hirota’s bilinear method. More specifically, the lo...
作者:Sheng Zhang , Yang Qiao , Hong-Bao Zhao
来源:[J].Thermal Science(IF 0.838), 2019, Vol.23 (3A/2019), pp.1479-1486塞尔维亚热力工程师协会
摘要:The original displacement value of fracture process zone can be obtained by digital image correlation technology. According to the virtual crack model, the formula to obtain the opening displacement is given in the experiment. Basing on the damage Mechanics theory and the actual ...
作者:Sheng Zhang , Caihong You , Bo Xu
来源:[J].Thermal Science(IF 0.838), 2019, Vol.23 (4/2019), pp.2381-2388塞尔维亚热力工程师协会
摘要:In this paper, the simplest exp-function method which combines the exp-function method with a direct algorithm is used to exactly solve the Mikhauilov-Novikov-Wang equations. As a result, two explicit and exact solutions are obtained. It is shown that the simplest exp-function me...
作者:Bo Xu , Sheng Zhang
来源:[J].Thermal Science(IF 0.838), 2019, Vol.23 (4/2019), pp.2403-2411塞尔维亚热力工程师协会
摘要:In this paper, the (4+1)-dimensional Fokas equation is solved by the generalized F-expansion method, and new exact solutions with arbitrary functions are obtained. The obtained solutions include Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric f...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×