欧几里得项目
期刊
会议
图书
作者:Clementina D. Mladenova , Danail S. Brezov , Ivaïlo M. Mladenov
来源:[C].Proceedings of the Nineteenth International Conference on Geometry, Integrability and Quantization2018Project Euclid
摘要:In the present paper we investigate an alternative two-axes decomposition method for rotations that has been proposed in our earlier research. It is shown to provide a convenient parametrization for many important physical systems. As an example, the kinematics of a rotating rigi...
作者:Veliko D. Donchev , Clementina D. Mladenova , Ivaïlo M. Mladenov
来源:[C].Proceedings of the Seventeenth International Conference on Geometry, Integrability and Quantization2016Project Euclid
摘要:The Cayley maps for the Lie algebras $\mathfrak{su}(1,1)$ and $\mathfrak{so}(2,1)$ converting them into the corresponding Lie groups $\mathrm{SU}(1,1)$ and $\mathrm{SO}(2,1)$ along their natural vector-parameterizations are examined. Using the isomorphism between $\mathrm{SU}(1,1...
作者:Danail S. Brezov , Clementina D. Mladenova , Ivaïlo M. Mladenov
来源:[C].Proceedings of the Eighteenth International Conference on Geometry, Integrability and Quantization2017Project Euclid
摘要:Here we develop a specific factorization technique for rotations in $\mathbb{R}^3$ into five factors about two or three fixed axes. Although not always providing the most efficient solution, the method allows for avoiding gimbal lock singularities and decouples the dependence on ...
作者:Veliko D. Donchev , Clementina D. Mladenova , Ivaïlo M. Mladenov
来源:[C].Proceedings of the Eighteenth International Conference on Geometry, Integrability and Quantization2017Project Euclid
摘要:The embeddings of the $\frak{so}(3)$ Lie algebra and the Lie group ${\rm SO}(3)$ in higher dimensions is an important construction from both mathematical and physical viewpoint. Here we present results based on a program package for building the generating matrices of the irreduc...
作者:Danail S. Brezov , Clementina D. Mladenova , Ivaïlo M. Mladenov
来源:[C].Proceedings of the Fifteenth International Conference on Geometry, Integrability and Quantization2014Project Euclid
摘要:Here we use an extension of Rodrigues' vectorparameter construction for pseudo-rotations in order to obtainexplicit formulae for the generalized Euler decompositionwith arbitrary axes for the structure groups in the classicalmodels of hyperbolic geometry. Although the constructio...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×