全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Mei-Ju Luo , Yan Zhang
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:We present a new method for solving the box-constrained stochastic linear variational inequality problem with three special types of uncertainty sets. Most previous methods, such as the expected value and expected residual minimization, need the probability distribution informati...
作者:Hatem Mejjaoli , Ahmedou Ould Ahmed Salem
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:We consider the continuous wavelet transform \(\mathcal{S}_{h}^{W}\) associated with the Weinstein operator. We introduce the notion of localization operators for \(\mathcal {S}_{h}^{W}\) . In particular, we prove the boundedness and compactness of localization operators ass...
作者:Xiao-Li Meng , Fu-Gui Shi
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:Based on the CCR model, we propose an extended data envelopment analysis to evaluate the efficiency of decision making units with historical input and output data. The contributions of the work are threefold. First, the input and output data of the evaluated decision making unit ...
作者:M Marin , RP Agarwal , L Codarcea
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:In this study we approach a mixed initial-boundary value problem to modeling a three-phase-lag dipolar thermoelastic body. The constitutive laws in this context are given. We establish a uniqueness result and prove a reciprocal theorem. The variational principle obtained in ...
作者:Yan Lin , Nan Zhang
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:In this paper, the authors establish the sharp maximal estimates for the multilinear iterated commutators generated by \(BMO\) functions and multilinear singular integral operators with generalized kernels. As applications, the boundedness of this kind of multilinear iterated com...
作者:Tiren Huang , Shenyang Tan , Xiaohui Zhang
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:We provide the monotonicity and convexity properties and sharp bounds for the generalized elliptic integrals \(\mathscr{K}_{a}(r)\) and \(\mathscr {E}_{a}(r)\) depending on a parameter \(a\in(0,1)\) , which contains an earlier result in the particular case \(a=1/2\) .
作者:Farzaneh Nikbakhtsarvestani , S Mansour Vaezpour , Mehdi Asadi
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:In this paper, some new generalization of Darbo’s fixed point theorem is proved by using a \(F(\psi,\varphi)\) -contraction in terms of a measure of noncompactness. Our result extends to obtaining a common fixed point for a pair of compatible mappings. The paper contains an ...
作者:Zizun Li , Wu-Sheng Wang
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:The purpose of the present paper is to establish some new retarded weakly singular integral inequalities of Gronwall-Bellman type for discontinuous functions, which generalize some known weakly singular and impulsive integral inequalities. The inequalities given here can be used ...
作者:Jorge A Esquivel-Avila
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:We consider an undamped second order in time evolution equation. For any positive value of the initial energy, we give sufficient conditions to conclude nonexistence of global solutions. The analysis is based on a differential inequality. The success of our result is based in a d...
作者:Bo Li , Minfeng Liao , Baode Li
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)
摘要:Let \(\varphi:\mathbb{R}^{n}\times[0, \infty) \to[0, \infty)\) satisfy that \(\varphi(x, \cdot)\) , for any given \(x\in\mathbb{R}^{n}\) , is an Orlicz function and \(\varphi(\cdot, t)\) is a Muckenhoupt \(A_{\infty}\) weight uniformly in \(t\in(0, \infty)\) . The Musielak-O...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×