全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Xubin Ping , Zhiwu Li , Abdulrahman Al-Ahmari
来源:[J].International Journal of Control, Automation and Systems(IF 0.953), 2017, Vol.15 (3), pp.976-985
摘要:For linear parameter varying (LPV) systems with unknown scheduling parameters and bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC) with input saturation is investigated. By pre-specifying partial controller parameters, ...
作者:Xubin Ping , Bo Qian , Ning Sun
来源:[J].Mathematical Problems in Engineering(IF 1.383), 2016, Vol.2016
摘要:For quasi-linear parameter varying (quasi-LPV) systems with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC) with the consideration of input saturation is investigated. The saturated dynamic output feedback controller i...
作者:Xubin Ping , Baocang Ding
来源:[J].Systems & Control Letters(IF 1.667), 2013, Vol.62 (11), pp.1038-1048
摘要:Abstract(#br)This paper presents an off-line approach to the dynamic output feedback robust model predictive control (OFRMPC) for a system with both polytopic uncertainty and bounded disturbance. For the off-line optimization, a sequence of controller parameters and the correspon...
作者:Baocang Ding , Xubin Ping
来源:[J].Journal of Process Control(IF 1.805), 2012, Vol.22 (9), pp.1773-1784
摘要:Abstract(#br)This paper presents dynamic output feedback model predictive control (DOFMPC) for nonlinear systems represented by a Hammerstein–Wiener model. Compared with a previous work (IET-OFMPC: output feedback model predictive control for nonlinear systems represented by...
作者:Xubin Ping , Qin Ye ...
来源:[J].Enzyme and Microbial Technology(IF 2.592), 2010, Vol.47 (5), pp.222-227
摘要:Abstract(#br)In this study, the fermentation of recombinant Pichia pastoris , which expresses heterogeneous human augmenter of liver regeneration (rhALR), has been optimized in a 5-L fermentor. The optimal methanol feeding method to optimize rhALR production was identified. ...
作者:Baocang Ding , Xubin Ping , Hongguang Pan
来源:[J].International Journal of Control(IF 1.008), 2013, Vol.86 (12), pp.2215-2227
摘要:This paper considers the dynamic output feedback robust model predictive control (MPC) of a quasi-linear parameter varying (quasi-LPV) system with bounded noise. In our previous works, for the unknown true state, either its ellipsoidal bounds or its polyhedral bounds were solely ...
作者:Xubin Ping , Ning Sun , Dewei Li
来源:[J].Journal of Applied Mathematics(IF 0.834), 2015, Vol.2015
摘要:For the quasi-linear parameter varying (quasi-LPV) system with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC) is investigated. The estimation error set is represented by a zonotope and refreshed by the zonotopic set-m...
作者:Xubin Ping , Bo Qian ...
来源:[J].Mathematical Problems in Engineering(IF 1.383), 2016, Vol.2016
摘要:For quasi-linear parameter varying (quasi-LPV) systems with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC) with the consideration of input saturation is investigated. The saturated dynamic output feedback controller i...
作者:Xubin Ping , Sen Yang ...
来源:[J].International Journal of Robust and Nonlinear Control(IF 1.9), 2020, Vol.30 (4), pp.1512-1533
摘要:Summary(#br)The present paper addresses an observer‐based output feedback robust model predictive control for the linear parameter varying system with bounded disturbance and noise subject to input and state constraints. The main contribution is that the on‐line convex optim...
作者:Xubin Ping
来源:[J].Asian Journal of Control(IF 1.411), 2017, Vol.19 (4), pp.1641-1653
摘要:Abstract(#br)For the linear parameter varying (LPV) system with available scheduling parameter and bounded disturbance, a synthesis approach to output feedback robust model predictive control (OFRMPC) is considered. By applying the technique of quadratic boundedness, the on‐...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×