全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Changhong Guo , Shaomei Fang
来源:[J].Advances in Difference Equations(IF 0.76), 2017, Vol.2017 (1)Springer
摘要:This paper studies the existence and blowup of solutions for the modified Klein-Gordon-Zakharov equations for plasmas with a quantum correction, which describe the interaction between high frequency Langmuir waves and low frequency ion-acoustic waves in a plasma considering the q...
作者:Lang Li , Lingyu Jin , Shaomei Fang
来源:[J].Boundary Value Problems(IF 0.922), 2017, Vol.2017 (1), pp.1-16Springer
摘要:Abstract(#br)In this paper, we consider the fractional Ginzburg-Landau equations near the Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate (BCS-BEC) crossover of atomic Fermi gases. This fractional Ginzburg-Landau equations can be viewed as a generalization of the integral diff...
作者:Xiucao Yin , Shaomei Fang , Changhong Guo
来源:[J].Advances in Difference Equations(IF 0.76), 2018, Vol.2018 (1), pp.1-17Springer
摘要:Abstract(#br)According to the principle of conservation of mass and the fractional Fick’s law, a new two-sided space-fractional diffusion equation was obtained. In this paper, we present two accurate and efficient numerical methods to solve this equation. First we discuss th...
作者:... Lingyu Jin , Changping Xie , Shaomei Fang
来源:[J].Advances in Difference Equations(IF 0.76), 2015, Vol.2015 (1), pp.1-15Springer
摘要:Abstract(#br)In this paper, we consider the fractional modified Zakharov system with a quantum correction. This system can be regarded as a generalization of the Garcia model to the fractional order. By the properties of the fractional Sobolev spaces and a priori estimates, we ov...
作者:Changhong Guo , Shaomei Fang
来源:[J].Advances in Difference Equations(IF 0.76), 2016, Vol.2016 (1), pp.1-14Springer
摘要:Abstract(#br)This paper studies the fractional Lotka-Volterra equations for three competitors, since the fractional derivatives possess the properties of good memory and have great biological significance. First of all, the equilibrium points and asymptotic stability for the equa...
作者:Lang Li , Lingyu Jin , Shaomei Fang
来源:[J].Advances in Difference Equations(IF 0.76), 2015, Vol.2015 (1), pp.1-14Springer
摘要:Abstract(#br)In this paper, we consider the initial boundary value problem for a coupled fractional diffusion system. By using eigenfunction expansions and a priori estimates, we establish the existence and uniqueness of the weak solution and then the regularity of the solution.
作者:... Boling Guo , Binqiang Xie , Shaomei Fang
来源:[J].Journal of Differential Equations(IF 1.48), 2017Elsevier
摘要:Abstract(#br)We investigate the nonlinear thermal instability of the magnetohydrodynamic problem for a full compressible viscous fluid with zero resistivity and zero heat conductivity in the presence of a uniform gravitational force in a bounded domain Ω ∈ R 3 . We establish...
作者:Lingyu Jin , Lang Li , Shaomei Fang
来源:[J].Computers and Mathematics with Applications(IF 2.069), 2017Elsevier
摘要:Abstract(#br)We consider the Cauchy problem of fractional pseudo-parabolic equation on the whole space R n , n ≥ 1 . Here, the fractional order α is related to the diffusion-type source term behaving as the usual diffusion term on the high frequency part. It has a feature of...
作者:Boling Guo , Zhaohui Huo , Shaomei Fang
来源:[J].Journal of Differential Equations(IF 1.48), 2017, Vol.263 (9), pp.5696-5726Elsevier
摘要:Abstract(#br)The Cauchy problem of the fifth order Kadomtsev–Petviashvili-I equation (fifth-KP-I) (0.1) ∂ t u + ∂ x 5 u ± ∂ x 3 u − ∂ x − 1 ∂ y y u + ∂ x ( u 2 ) = 0 , ( x , y , t ) ∈ R 3 ; is considered.(#br)It follows that t...
作者:Shaomei Fang , Bo Huang ...
来源:[J].Obesity Surgery(IF 3.102), 2019, Vol.29 (9), pp.2912-2922Springer
摘要:Abstract(#br) Background(#br)Roux-en-Y gastric bypass (RYGB) is an effective surgical treatment for type 2 diabetes mellitus (T2DM). The present study aimed to investigate the effects of RYGB on glucose homeostasis, lipid metabolism, and liver morphological adaption, as well...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×