全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:... Ravi P Agarwal , Saad Ihsan Butt , Josip Pečarić
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2017, Vol.2017 (1)Springer
摘要:The inequality of Popoviciu, which was improved by Vasić and Stanković (Math. Balk. 6:281-288, 1976 ), is generalized by using new identities involving new Green’s functions. New generalizations of an improved Popoviciu inequality are obtained by using generalized Montgomery...
作者:... Khadija Maqbool , Saad Ihsan Butt , Qasim Ali Chaudhry
来源:[J].Complex Adaptive Systems Modeling, 2017, Vol.5 (1)Springer
摘要:Bone is comprised of an enormously hierarchical construction that promotes transportation of necessary fluids and solids, guaranteeing accurate function and growth. Bone remodeling is a combined process of bone creation and destruction. A number of mathematical models have been d...
作者:Saad Ihsan Butt , Asfand Fahad ...
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2019, Vol.2019 (1), pp.1-23Springer
摘要:Abstract(#br)By using generalized Montgomery identity and Green functions we proved several identities which assist in developing connections with Steffensen’s inequality. Under the assumptions of n -convexity and n -concavity many inequalities, which generalize Steffensen’s...
作者:Saad Ihsan Butt , Asfand Fahad ...
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2019, Vol.2019 (1), pp.1-23DOAJ
摘要:Abstract By using generalized Montgomery identity and Green functions we proved several identities which assist in developing connections with Steffensen’s inequality. Under the assumptions of n-convexity and n-concavity many inequalities, which generalize Steffensen’s inequ...
作者:Saad Ihsan Butt , László Horváth
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2018, Vol.2018 (1), pp.1-21Springer
摘要:Abstract(#br)We generalize cyclic refinements of Jensen’s inequality from a convex function to a higher-order convex function by means of Lagrange–Green’s function and Fink’s identity. We formulate the monotonicity of the linear functionals obtained from these identitie...
作者:... Jamshed Nasir , Saad Ihsan Butt , Sabir Hussain
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2019, Vol.2019 (1), pp.1-10Springer
摘要:Abstract(#br)The main goal of this research is to introduce a new form of generalized Hermite–Hadamard and Simpson type inequalities utilizing Riemann–Liouville fractional integral by a new class of preinvex functions which is known as strongly generalized ...
作者:Saad Ihsan Butt , Asma Asma ...
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2019, Vol.2019 (1), pp.1-10Springer
摘要:Abstract(#br)In the present article, the authors have established some Hermite–Hadamard type integral inequalities via Riemann–Liouville fractional integrals that generalize Hermite–Hadamard type inequalities and a few other results (Dragomir and Agarwal in Appl. Math. ...
作者:Saad Ihsan Butt , Ðilda Pečarić
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2019, Vol.2019 (1), pp.1-18Springer
摘要:Abstract(#br)We present some fundamental results and definitions regarding Jensen’s inequality with the aim of obtaining new generalizations of cyclic refinements of Jensen’s inequality from convex to higher order convex functions using Taylor’s formula. We discuss the ...
作者:Saad Ihsan Butt , Farooq Ahmad ...
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2019, Vol.2019 (1), pp.1-11Springer
摘要:Abstract(#br)In current continuation, we have incorporated the notion of s − ( α , m ) $s- ( {\alpha,m} ) $ -convex functions and have established new integral inequalities. In order to generalize Hermite–Hadamard-type inequalities, some new integral inequalities of Her...
作者:Saad Ihsan Butt , Josip Pečarić , Ivan Perić
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2012, Vol.2012 (1), pp.1-11Springer
摘要:Abstract(#br)In this paper, we give refinements of some inequalities for generalized monotone functions by using log-convexity of some functionals.

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×