全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:M. Jarrar , S. Kabbaj
来源:[J].Communications in Algebra(IF 0.356), 2018, Vol.46 (5), pp.2073-2082Taylor & Francis
摘要:ABSTRACT(#br)The Nagata ring R ( X ) and the Serre’s conjecture ring R ⟨ X ⟩ are two localizations of the polynomial ring R [ X ] at the polynomials of unit content and at the monic polynomials, respectively. In this paper, we contribute to the study of Prüfer condition...
作者:S. Kabbaj , M. Akkaoui ...
来源:[J].Journal of Thrombosis and Thrombolysis(IF 1.985), 2018, Vol.46 (1), pp.113-119Springer
摘要:Abstract(#br)Venous thromboembolism (VTE) is a common clinical problem that is associated with substantial morbidity and mortality. The aim of this study was to describe the clinical practices in VTE prophylaxis in university and peripheral hospitals in Morocco. This is a na...
作者:S. Kabbaj , A. Mimouni
来源:[J].Journal of Algebra(IF 0.583), 2016, Vol.445, pp.327-351Elsevier
摘要:Abstract(#br)This paper uses objects and techniques from multiplicative ideal theory to develop explicit formulas for the core of ideals in various classes of integral domains (not necessarily Noetherian). We also investigate the existence of minimal reductions (originally establ...
作者:... M. Jarrar , S. Kabbaj , N. Mahdou
来源:[J].Communications in Algebra(IF 0.356), 2015, Vol.43 (1), pp.249-261Taylor & Francis
摘要:This paper investigates ideal-theoretic as well as homological extensions of the Prüfer domain concept to commutative rings with zero divisors in an amalgamated duplication of a ring along an ideal. The new results both compare and contrast with recent results on trivial rin...
作者:K. Adarbeh , S. Kabbaj
来源:[J].Journal of Algebra(IF 0.583), 2016, Vol.466, pp.169-183Elsevier
摘要:Abstract(#br)In this paper, we prove an extension of Zaks' conjecture on integral domains with semi-regular proper homomorphic images (with respect to finitely generated ideals) to arbitrary rings (i.e., possibly with zero-divisors). The main result extends and recovers Levy...
作者:B. Fadli , D. Zeglami , S. Kabbaj
来源:[J].Indagationes Mathematicae(IF 0.206), 2015, Vol.26 (4), pp.660-668Elsevier
摘要:Abstract(#br)Let ( G , + ) be a locally compact abelian Hausdorff group, and let μ be a regular compactly supported complex-valued Borel measure on G such that μ ( G ) = 1 2 . We find the continuous solutions f , g : G → C of the functional equation ∫ G { f ( x + y − t ...
作者:Kh. Sabour , B. Fadli , S. Kabbaj
来源:[J].Aequationes mathematicae(IF 0.422), 2016, Vol.90 (5), pp.1001-1011Springer
摘要:Abstract(#br) In the present paper, we determine the complex-valued solutions ( f , g ) of the functional equation $$f(x\sigma(y))+f(\tau(y)x)=2f(x)g(y),$$ in the setting of groups and monoids that need not be abelian, where \({\sigma,\tau}\) are involutive automorphisms. We prov...
作者:A. Chahbi , B. Fadli , S. Kabbaj
来源:[J].Acta Mathematica Hungarica(IF 0.348), 2016, Vol.149 (1), pp.170-176Springer
摘要:Abstract(#br) Let S be a semigroup, and let \({\sigma,\tau \in {\rm Hom}(S,S)}\) satisfy \({\tau\circ\tau = \sigma\circ\sigma = \rm{id}}\) . We determine the solutions \({f : S \to \mathbb{C}}\) of the functional equation $$f(x\sigma(y)) + f(\tau(y)x) = 2f(x)f(y),\quad x,y \in S,...
作者:S. Kabbaj , KH. Sabour
来源:[J].Acta Mathematica Hungarica(IF 0.348), 2016, Vol.150 (2), pp.363-371Springer
摘要:Abstract(#br) Let S be a semigroup, let H be an abelian group which is 2-torsion free, and let \({\varphi \colon S \to S}\) be an endomorphism. We determine the solutions \({ g \colon S \to \mathbb{C}}\) of the functional equation $$g(xy)+g(\varphi(y)x)=2g(x)g(y), \quad x,y \in S...
作者:D. Zeglami , B. Fadli , S. Kabbaj
来源:[J].Aequationes mathematicae(IF 0.422), 2015, Vol.89 (5), pp.1265-1280Springer
摘要:Abstract(#br) Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded and σ -invariant measure. We determine the continuous, bounded and μ -central solutions of the functional equation $$ \int\limits_{G} f(xty)d \mu (t) + \int\l...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×