全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:G.A. Kuznetsov , M.M. Yakupov
来源:[J].Vestn. Chelyab. Univ., Ser. 3, Mat. Mekh. Inform., 2002, Vol.2002 (1(6)), pp.92-103ZBMATH
摘要:Summary: The Cauchy-Dirichlet problem for the title system is considered, and it is shown that the phase space of the problem is a simple Banach $C^\infty$-manifold.
作者:S.A. Zagrebina , M.M. Yakupov
来源:[J].Vestn. Yuzhno-Ural. Gos. Univ. 27(127), Ser. Mat. Model. Program. 2, 10-18 (2008)., 2008, pp.10-18ZBMATH
摘要:The authors analyse the unique solvability of the Cauchy problem for a semilinear Sobolev type equation with a relatively $p$-sectorial operator, and the stability its solutions near the origin. The thermoconvection problem for the Oskolkov equation modeling the dynamics of an in...
作者:G.A. Sviridyuk , M.M. Yakupov
来源:[J].Differ. Equations(IF 0.42), 1996, Vol.32 (11), pp.1535-1540ZBMATH
摘要:The paper is devoted to the solvability of the Cauchy-Dirichlet problem $$\psi (x,y,0)= \psi_0 (x,y),\ (x,y) \in\Omega \subset \bbfR^2;\ \psi (x,y,t) =\nabla^2 \psi(x,y,t),\ (x,y,t) \in\partial \Omega \times\bbfR,$$ for the Oskolkov-type equation $$(1-\chi \nabla^2) \nabla^2 \par...
作者:G.A. Sviridyuk , M.M. Yakupov
来源:[J].Magnitogorsk: MaGU, Magnitogorskij Gosudarstvennyj Univ. 77 p. (2002)., 2002ZBMATH
摘要:The authors give a survey of concepts from set theory, category theory and topology which are relevant to functional analysis. The notion of bornology on a set is introduced and its relation to linearity and topology is studied and some statements proved. The results are applied ...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×