全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Kelei Zhang , Junqiang Han
来源:[J].Applied Mathematics and Computation(IF 1.349), 2015, Vol.251, pp.108-117
摘要:Abstract(#br)By using the bifurcation theory of planar dynamical systems to the (2 + 1)-dimensional generalized asymmetric Nizhnik–Novikov–Veselov equation, the existence for solitary wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions ...
作者:Yan Dong , Guangwei Du , Kelei Zhang
来源:[J].Boundary Value Problems(IF 0.922), 2019, Vol.2019 (1), pp.1-15
摘要:Abstract(#br)In this paper, we study the degenerate parabolic system u t i + X α ∗ ( a i j α β ( z ) X β u j ) = g i ( z , u , X u ) + X α ∗ f i α ( z , u , X u ) , $$ u_{t}^{i} + X_{\alpha }^{*} \bigl(a_{ij}^{\alpha \beta }(z){X_{\beta }} {u^{j}}\bigr) = {g_{i}}(z...
作者:Kelei Zhang , Shengqiang Tang , Zhaojuan Wang
来源:[J].Applied Mathematics and Computation(IF 1.349), 2009, Vol.217 (4), pp.1620-1631
摘要:Abstract(#br)By using the bifurcation theory of planar dynamical systems to the nonlinear dispersion Drinfel’d–Sokolov ( D ( m , n ) ) system, the existence of solitary wave solutions, kink and anti-kink wave solutions, compacton solutions and uncountably infinite many smoot...
作者:... Zhiguang Xie , Kelei Zhang , Jianji Wang
来源:[J].Chemical Engineering Journal(IF 3.473), 2011, Vol.179, pp.44-51
摘要:Abstract(#br)In this work, a novel Bi-based oxyhalide Bi 4 TaO 8 I was prepared and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffuse reflectance spectroscopy. Photocatalytic activity of th...
作者:Kelei Zhang , Shengqiang Tang , Zhaojuan Wang
来源:[J].Communications in Nonlinear Science and Numerical Simulation(IF 2.773), 2009, Vol.15 (3), pp.564-572
摘要:Abstract(#br)By using the bifurcation theory of planar dynamical systems to the generalized Camassa–Holm–KP equations, the existence of smooth and non-smooth travelling wave solutions is proved. Under different regions of parametric spaces, various sufficient conditions to g...
作者:Shengqiang Tang , Chunhai Li , Kelei Zhang
来源:[J].Communications in Nonlinear Science and Numerical Simulation(IF 2.773), 2009, Vol.15 (11), pp.3358-3366
摘要:Abstract(#br)In this paper, the ( N + 1)-dimensional sine–cosine-Gordon equations are studied. The existence of solitary wave, kink and anti-kink wave, and periodic wave solutions are proved, by using the method of bifurcation theory of dynamical systems. All possible bound...
作者:... Zhongpo Zhou , Kelei Zhang , Haiying Wang
来源:[J].Nanotechnology(IF 3.842), 2019, Vol.30 (40)
摘要:Two-dimensional materials have recently been the focus of extensive research. Graphene-based vertical van der Waals heterostructures are expected to design and fabricate novel electronic and optoelectronic devices. Monolayer gallium telluride is a graphene-like nanosheet syn...
作者:Kelei Zhang , Zhiguang Xie ...
来源:[J].Journal of Environmental Engineering(IF 1.399), 2012, Vol.138 (3), pp.259-264
摘要:Bi-based oxyhalide Bi 4 TaO 8 X ( X = Cl , Br, I) photocatalysts have been prepared by the combined method of liquid phase and solid state reactions and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Ultraviolet-visible diffuse reflectance spect...
作者:Pengcheng Niu , Kelei Zhang , Sung G. Kim
来源:[J].Abstract and Applied Analysis(IF 1.102), 2014, Vol.2014
摘要:Let { X 1 , X 2 , … , X m } be the basis of space of horizontal vector fields in a Carnot group G = ( R n ; ∘ ) ( m < n ) . We prove high order Fefferman-Phong type inequalities in G . As applications, we derive a priori L p ( G ) estimates for the nondivergence degenerate e...
作者:Guangwei Du , Kelei Zhang , Yan Dong
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2019, Vol.2019 (1), pp.1-16
摘要:Abstract Let X={X1,…,Xm} $X=\{X_{1} ,\ldots ,X_{m} \}$ be a system of smooth real vector fields satisfying Hörmander’s rank condition. We consider the interior regularity of weak solutions to an obstacle problem associated with the nonhomogeneous nondiagonal quasilinear...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×