全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:István Győri , Ferenc Hartung , Nahed A. Mohamady
来源:[J].Periodica Mathematica Hungarica(IF 0.261), 2017, Vol.75 (1), pp.114-127Springer
摘要:In this paper we consider the nonlinear system \(\gamma _i(x_i)=\sum _{j=1}^{m}g_{ij} (x_j)\) , \( 1\le i \le m\) . We give sufficient conditions which imply the existence and uniqueness of positive solutions of the system. Our theorem extends earlier results known in the literat...
作者:István Győri , László Horváth
来源:[J].Advances in Difference Equations(IF 0.76), 2010, Vol.2010 (1), pp.1-20Springer
摘要:Abstract(#br)It is found that every solution of a system of linear delay difference equations has finite limit at infinity, if some conditions are satisfied. These are much weaker than the known sufficient conditions for asymptotic constancy of the solutions. When we impose some ...
作者:István Győri , László Horváth
来源:[J].Advances in Difference Equations(IF 0.76), 2008, Vol.2008 (1), pp.1-22Springer
摘要:Abstract(#br)This article analyses the asymptotic behaviour of solutions of linear Volterra difference equations. Some sufficient conditions are presented under which the solutions to a general linear equation converge to limits, which are given by a limit formula. This result is...
作者:István Győri , László Horváth
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2008, Vol.2008 (1), pp.1-35Springer
摘要:Abstract(#br)Asymptotic behavior of a convolution of a function with a measure is investigated. Our results give conditions which ensure that the exact rate of the convolution function can be determined using a positive weight function related to the given function and measure. M...
作者:István Győri , Mihály Pituk
来源:[J].Electronic Journal of Qualitative Theory of Differential Equations(IF 0.74), 2016, Vol.2016 (72), pp.1-14DOAJ
摘要:The linear delay differential equation$$x'(t)=p(t)x(t-r)$$is considered, where $r>0$ and the coefficient $p:[t_0,\infty)\to\mathbb{R}$ is a continuous function such that $p(t)\to0$ as $t\to\infty$. In a recent paper [M. Pituk, G. Röst, Bound. Value Probl. 2014:114] an asympt...
作者:István Győri , László Horváth
来源:[J].Electronic Journal of Qualitative Theory of Differential Equations(IF 0.74), 2016, Vol.2016 (111), pp.1-25DOAJ
摘要:Various attempts have been made to give an upper bound for the solutions of the delayed version of the Gronwall-Bellman integral inequality, but the obtained estimations are not sharp. In this paper a new approach is presented to get sharp estimations for the nonnegative solution...
作者:István Győri , Ferenc Hartung , Nahed A. Mohamady
来源:[J].Applied Mathematics and Computation(IF 1.349), 2015, Vol.270, pp.909-925Elsevier
摘要:Abstract(#br)The nonlinear delay differential equation x ˙ ( t ) = r ( t ) [ g ( t , x t ) − h ( x ( t ) ) ] , t ≥ 0 is considered. Sufficient conditions are established for the uniform permanence of the positive solutions of th...
作者:István Győri , László Horváth , Agacik Zafer
来源:[J].Abstract and Applied Analysis(IF 1.102), 2013, Vol.2013Hindawi
摘要:It is proved that any first-order globally periodic linear inhomogeneousautonomous difference equation defined by a linear operator with closedrange in a Banach space has an equilibrium. This result is extended forhigher order linear inhomogeneous system in a real or complex Eucl...
作者:István Győri , David W. Reynolds
来源:[J].Journal of Difference Equations and Applications(IF 0.743), 2010, Vol.16 (12), pp.1393-1412Taylor & Francis
摘要:Suppose that a pair of sequence spaces is admissible with respect to a discrete linear Volterra operator. This paper gives sufficient conditions for the same pair of spaces to be admissible with respect to the associated resolvent operator. The spaces considered include spaces of...
作者:István Győri , David W. Reynolds
来源:[J].Journal of Difference Equations and Applications(IF 0.743), 2012, Vol.18 (11), pp.1925-1930Taylor & Francis
摘要:This paper presents explicit asymptotic limits for some solutions of a special kind of Volterra difference equations and exhibits a class of equations having asymptotic equilibrium.

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×