全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:G.A. Sviridyuk
来源:[J].Sov. Math., Dokl., 1991, Vol.43 (3), pp.797-801ZBMATH
摘要:Consider the Cauchy problem $(*)$ $Lu'=M(u)$, $u(0)=u\sp 0$, where $L: U\to F$ is a continuous linear operator, $U$, $F$ are Banach spaces and $M\in C\sp k(U,F)$, $k\ge 1$. In this paper, the existence of solutions of $(*)$ is investigated by the analogue of the Lyapunov-Schmidt ...
作者:G.A. Sviridyuk , T.A. Bokareva
来源:[J].Sov. Math., Dokl., 1991, Vol.44 (1), pp.297-301ZBMATH
摘要:To study processes with fast and slow variables it is convenient to introduce the Deborah number De equal to the ratio of the time scales of slow and fast variables. The authors set $\text{De}= 1/\varepsilon$ and consider a system of equations of reaction-diffusion type $$\vareps...
作者:G.A. Sviridyuk
来源:[J].Sov. Math., 1990, Vol.34 (12), pp.80-86ZBMATH
摘要:The following initial-boundary value problem is considered: $$(\lambda- \nabla\sp 2)u\sb t-\nu\nabla\sp 2u+(u\cdot\nabla)u+\nabla p=f+g\gamma s;\quad \nabla\cdot u=0;\quad S\sb t-\kappa\nabla\sp 2S+u\cdot\nabla S=u\cdot\gamma;$$ $$u(x,0)=u\sb 0(x);\quad S(x,0)=S\sb 0(x);\quad u(x...
作者:G.A. Sviridyuk
来源:[J].Differential Equations(IF 0.42), 1990, Vol.26 (11), pp.1495-1499ZBMATH
摘要:The Oskolkov system of equations $$(\lambda-\nabla\sp 2)u\sb t= \nu\nabla\sp 2u-(u\cdot\nabla)u+\nabla p+f,\qquad\nabla\cdot u=0\tag 1$$ models the dynamics of a linear non-Newtonian fluid, i.e., an incompressible viscoelastic Kelvin-Voigt fluid of order one.\par Let $\Omega\subs...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×