全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Caidong Zhang , Feng Zuo ...
来源:[J].Journal of Food Composition and Analysis(IF 2.088), 2019, Vol.83Elsevier
摘要:Abstract(#br)The application of fertilizers and pesticides significantly affects the contents of some mineral elements in rice. Excluding these mineral elements can improve the accuracy of traceability models of rice. With Longjing 31 (a rice variety) as the study object, we carr...
作者:Caidong Zhang , Xiaoxing Chi ...
来源:[J].Journal of Food Quality(IF 0.758), 2019, Vol.2019Hindawi
摘要:The study aims to investigate whether the multielement analysis result can be used as a fingerprint to identify the geographical origin of Wuchang rice. The element contents of rice and soil samples from three regions in China (Wuchang, Qiqihar, and Jiamusi) were analyzed. The co...
作者:QingQiang Wu , CaiDong Zhang , XinYing An
来源:[J].Journal of Information Science(IF 1.238), 2013, Vol.39 (3), pp.319-332Sage国际出版集团
摘要:This paper describes the application of co-occurrence and latent Dirichlet allocation (LDA)-based topic analyses in stem cell-related literature research. On account of the deficiency of parameter estimation in LDA, this study integrated co-occurrence theory and clustering judgem...
作者:CaiDong Zhang , QingQi Hong
来源:[J].Journal of Information Science(IF 1.238), 2014, Vol.40 (5), pp.611-620Sage国际出版集团
摘要:This paper analyses topic segmentation based on the LDA (Latent Dirichlet Allocation) model, and performs the topic segmentation and topic evolution of stem cell research literatures in PubMed from 2001 to 2012 by combining the HMM (Hidden Markov Model) and co-occurrence theory. ...
作者:Caidong Zhang , Xiang Deng
来源:[C].Computer Science & Education (ICCSE), 2011 6th International Conference on2011IEEE
摘要:A text mining model for topical evolutionary analysis was proposed through a text latent semantic analysis process on textual data. Analyzing topic evolution through tracking the topic different trends over time. Using the LDA model for the corpus and text to get the topics,...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×