全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Yuan Liu , Yingda Cheng , Chi-Wang Shu
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.73 (2-3), pp.1028-1071
摘要:In this paper, we propose a simple bound-preserving sweeping procedure for conservative numerical approximations. Conservative schemes are of importance in many applications, yet for high order methods, the numerical solutions do not necessarily satisfy maximum principle. This pa...
作者:Huailing Song , Chi-Wang Shu
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.73 (2-3), pp.1178-1203
摘要:In this article, we present a second-order in time implicit–explicit (IMEX) local discontinuous Galerkin (LDG) method for computing the Cahn–Hilliard equation, which describes the phase separation phenomenon. It is well-known that the Cahn–Hilliard equation has a nonlin...
作者:Xingjie Helen Li , Chi-Wang Shu , Yang Yang
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.73 (2-3), pp.943-967
摘要:In this paper, we apply the local discontinuous Galerkin (LDG) method to 2D Keller–Segel (KS) chemotaxis model. We improve the results upon (Epshteyn and Kurganov in SIAM J Numer Anal, 47:368–408, 2008 ) and give optimal rate of convergence under special finite element space...
作者:Jun Zhu , Jianxian Qiu , Chi-Wang Shu
来源:[J].Journal of Computational Physics(IF 2.138), 2020, Vol.404
摘要:Abstract(#br)In this paper, a new type of multi-resolution weighted essentially non-oscillatory (WENO) limiters for high-order Runge-Kutta discontinuous Galerkin (RKDG) methods is designed. This type of multi-resolution WENO limiters is an extension of the multi-resolution WENO f...
作者:Jun Zhu , Chi-Wang Shu
来源:[J].Journal of Computational Physics(IF 2.138), 2020, Vol.406
摘要:Abstract(#br)In this continuing paper of Zhu and Shu (2018) [62], Zhu and Shu (2019) [63], we design a new third-order finite volume multi-resolution weighted essentially non-oscillatory (WENO) scheme for solving hyperbolic conservation laws on tetrahedral meshes. We only use the...
作者:... Rafael B. de Rezende Borges , Guilherme Bertoldo , Chi-Wang Shu
来源:[J].Applied Mathematical Modelling(IF 1.706), 2020, Vol.77 (Pt 1), pp.724-737
摘要:Abstract(#br)Richardson extrapolation is a powerful approach for reducing spatial discretization errors and increasing, in this way, the accuracy of the computed solution obtained by use of many numerical methods for solving different scientific and engineering problems. This app...
作者:Sergio Amat , Juan Ruiz , Chi-Wang Shu
来源:[J].Applied Mathematics Letters(IF 1.501), 2020, Vol.105
摘要:Abstract(#br)In this article we present a generalization of the WENO algorithm of order six for data discretized in the point values introduced in Amat et al. (2019). This generalization requires a slight modification of the mentioned algorithm. The objective is to obtain a new W...
作者:... Armando Majorana , Chi-Wang Shu , James Chelikowsky
来源:[J].Computer Methods in Applied Mechanics and Engineering(IF 2.617), 2017, Vol.321, pp.209-234
摘要:Abstract(#br)The purpose of this work is to incorporate numerically, in a discontinuous Galerkin (DG) solver of a Boltzmann–Poisson model for hot electron transport, an electronic conduction band whose values are obtained by the spherical averaging of the full band structure...
作者:Yong Liu , Chi-Wang Shu , Mengping Zhang
来源:[J].Journal of Computational Physics(IF 2.138), 2018, Vol.354, pp.163-178
摘要:Abstract(#br)We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of t...
作者:Dan Ling , Juan Cheng , Chi-Wang Shu
来源:[J].Computers and Fluids(IF 1.467), 2018, Vol.169, pp.230-248
摘要:Abstract(#br)For a Lagrangian scheme solving the compressible Euler equations in cylindrical coordinates, two important issues are whether the scheme can maintain spherical symmetry (symmetry-preserving) and whether the scheme can maintain positivity of density and internal energ...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×