全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:C.M. Joshi , S.K. Bissu
来源:[J].Journal of Computational and Applied Mathematics(IF 0.989), 1996, Vol.69 (2), pp.251-259Elsevier
摘要:Abstract(#br)Inequalities for Bessel functions, modified Bessel functions and of their ratios are obtained. These results are either sharper or hold under weaker conditions than had been known earlier. Similar inequalities are proved for the function w v (t) = tI v (t) I v+1 (t) ...
作者:C.M. Joshi , Yashoverdhan Vyas
来源:[J].Applied Mathematics and Computation(IF 1.349), 2006, Vol.187 (1), pp.219-222Elsevier
摘要:Abstract(#br)In this paper, we derive two most general possible q -hypergeometric expansion formulae for 12 Φ 11 ( q ) and r Φ s ( z ), respectively. The results are unique in the sense that no such results are available in the literature beyond 4 Φ 3 ( q ) so far and have t...
作者:C.M. Joshi , Yashoverdhan Vyas
来源:[J].Journal of Mathematical Analysis and Applications(IF 1.05), 2005, Vol.320 (2), pp.642-648Elsevier
摘要:Abstract(#br)Recently we discovered several new Erdélyi type integrals. In the present paper, it is shown how the q -extensions of all those integrals involving and representing certain q -hypergeometric functions can be developed. The well-known special cases and applicatio...
作者:C.M. Joshi , Yashoverdhan Vyas
来源:[J].Journal of Computational and Applied Mathematics(IF 0.989), 2003, Vol.160 (1), pp.125-138Elsevier
摘要:Abstract(#br)It is shown how series manipulation technique and certain classical summation theorems for hypergeometric series can be used to prove Erdélyi's integral representations for 2 F 1 ( z ), originally proved using fractional calculus. The method not only leads to ge...
作者:C.M. Joshi , N.L. Joshi
来源:[J].Journal of Mathematical Analysis and Applications(IF 1.05), 1997, Vol.207 (1), pp.1-11Elsevier
摘要:Abstract(#br)Certain general fractional derivatives formulas involving the H -function of one and more variables are established that generalize the corresponding results considered by Srivastava and Goyal. This leads us to an extension of the expansion formula for the Lauricella...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×