全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Amar Debbouche , Juan J. Nieto , Delfim F. M. Torres
来源:[J].Journal of Optimization Theory and Applications(IF 1.423), 2017, Vol.174 (1), pp.7-31Springer
摘要:We introduce the optimality question to the relaxation in multiple control problems described by Sobolev-type nonlinear fractional differential equations with nonlocal control conditions in Banach spaces. Moreover, we consider the minimization problem of multi-integral functional...
作者:Bekkar Meneceur , Kamel Haouam , Amar Debbouche
来源:[J].Advances in Difference Equations(IF 0.76), 2017, Vol.2017 (1), pp.1-15Springer
摘要:Abstract(#br)We investigate nonexistence results of nontrivial solutions of fractional differential inequalities of the form ( FS q m ) : ...
作者:Amar Debbouche , Dumitru Baleanu , Ravi P Agarwal
来源:[J].Boundary Value Problems(IF 0.922), 2012, Vol.2012 (1), pp.1-10Springer
摘要:Abstract(#br)In this paper, Schauder fixed point theorem, Gelfand-Shilov principles combined with semigroup theory are used to prove the existence of mild and strong solutions for nonlinear fractional integrodifferential equations of Sobolev type with nonlocal conditions in Banac...
作者:Amar Debbouche
来源:[J].Advances in Difference Equations(IF 0.76), 2011, Vol.2011 (1), pp.1-10Springer
摘要:Abstract(#br)In this article, sufficient conditions for the existence result of quasilinear multi-delay integro-differential equations of fractional orders with nonlocal impulsive conditions in Banach spaces have been presented using fractional calculus, resolvent operators, and ...
作者:Amar Debbouche , Juan J. Nieto
来源:[J].Electronic Journal of Differential Equations(IF 0.426), 2015, Vol.2015 (89,), pp.1-18DOAJ
摘要:A control system described by fractional evolution integro-differentialequations and fractional integral nonlocal control conditions is investigated.This posed system is subjected to mixed multivalued control constraintswhose values are nonconvex closed sets. Along with the origi...
作者:Amar Debbouche , Mahmoud M. El-Borai
来源:[J].Electronic Journal of Differential Equations(IF 0.426), 2009, Vol.2009 (46,), pp.1DOAJ
摘要:In this article, we prove the existence of optimal mild solutions for linear fractional evolution equations with an analytic semigroup in a Banach space. As in [16], we use the Gelfand-Shilov principle to prove existence, and then the Bochner almost periodicity condition to show ...
作者:Mourad Kerboua , Amar Debbouche , Dumitru Baleanu
来源:[J].Abstract and Applied Analysis(IF 1.102), 2013, Vol.2013DOAJ
摘要:We study a class of fractional stochastic dynamic control systems of Sobolev type in Hilbert spaces. We use fixed point technique, fractional calculus, stochastic analysis, and methods adopted directly from deterministic control problems for the main results. A new set of suffici...
作者:Mabrouk Bragdi , Amar Debbouche , Dumitru Baleanu
来源:[J].Advances in Mathematical Physics(IF 0.459), 2013, Vol.2013DOAJ
摘要:We discuss the existence of solutions for a class of some separated boundary differential inclusions of fractional orders 2<α<3 involving the Caputo derivative. In order to obtain necessary conditions for the existence result, we apply the fixed point technique, fractional c...
作者:Mourad Kerboua , Amar Debbouche , Dumitru Baleanu
来源:[J].Electronic Journal of Qualitative Theory of Differential Equations(IF 0.74), 2014, Vol.2014 (58), pp.1-16DOAJ
摘要:We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, f...
作者:Junfei Cao , Amar Debbouche , Yong Zhou
来源:[J].Mediterranean Journal of Mathematics(IF 0.641), 2018, Vol.15 (4), pp.1-22Springer
摘要:Abstract(#br)This paper is devoted to study a class of abstract fractional evolution equation in a Banach space X : $$\begin{aligned} \hbox {D}_{+}^{\alpha }x(t)+Ax(t)=F(t,x(t)), \quad t\in \mathbb {R}, \end{aligned}$$ D + α x ( t ) + A x ( t ) = F ( t , x ( t ) ) , ...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×