全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Chinedu Duru , Cosmas Ani
来源:[J].Sādhanā(IF 0.393), 2017, Vol.42 (11), pp.1889-1899Springer
摘要:... Through the hypothesis test, the maximum likelihood ratio scheme is used to provide an optimal performance analysis of the detection idea. The test also takes into consideration the signal to noise ratio performance of the two settings of underground and overground and is cru...
作者:Andrew M. Smith , John P. Christodouleas , Wei-Ting Hwang
来源:[J].BMC Medical Research Methodology(IF 2.211), 2019, Vol.19 (1), pp.1-14DOAJ
摘要:Abstract Background The likelihood ratio function (LR), the ratio of conditional probabilities of obtaining a specific marker value among those with the event of interest over those without, provides an easily interpretable way to quantify the update of the risk prediction d...
作者:Keith Inman , Norah Rudin , Ken Cheng ...
来源:[J].BMC Bioinformatics(IF 3.024), 2015, Vol.16 (1)Springer
摘要:... One approach to account for this uncertainty is to use a likelihood ratio framework to compare the probability of the evidence profile under different scenarios. While researchers favor the likelihood ratio framework, few open-source software solutions with a graphical user i...
作者:Lianbo Yu , Soledad Fernandez , Guy Brock
来源:[J].BMC Bioinformatics(IF 3.024), 2017, Vol.18 (1)Springer
摘要:Sample size calculation and power estimation are essential components of experimental designs in biomedical research. It is very challenging to estimate power for RNA-Seq differential expression under complex experimental designs. Moreover, the dependency among genes should be ta...
作者:Parikh Rajul , Parikh Shefali , Arun Ellen ...
来源:[J].Indian Journal of Ophthalmology(IF 1.019), 2009, Vol.57 (3), pp.217DOAJ
摘要:In this article we provide an introduction to the use of likelihood ratios in clinical ophthalmology. Likelihood ratios permit the best use of clinical test results to establish diagnoses for the individual patient. Examples and step-by-step calculations demonstrate the estimatio...
作者:Younggwan Kim , Youngjoo Suh , Hoirin Kim
来源:[J].EURASIP Journal on Advances in Signal Processing(IF 0.807), 2011, Vol.2011 (1), pp.1-12Springer
摘要:... The decision rule of SMVAD is based on the likelihood ratio test (LRT). The LRT-based decision rule may cause detection errors because of statistical properties of noise and speech signals. In this article, we first analyze the reasons why the detection errors occur and then ...
作者:Shiwen Deng , Jiqing Han
来源:[J].EURASIP Journal on Audio, Speech, and Music Processing(IF 0.63), 2011, Vol.2011 (1), pp.1-12Springer
摘要:... A statistical model is employed to derive the decision rule from the likelihood ratio test. According to the experimental results, the proposed VAD method shows better performance than the VAD based on the DFT coefficients in various noise environments.
作者:Parikh Rajul , Parikh Shefali , Arun Ellen ...
来源:[J].Indian Journal of Ophthalmology(IF 1.019), 2009, Vol.57 (3), pp.217-221DOAJ
摘要:In this article we provide an introduction to the use of likelihood ratios in clinical ophthalmology. Likelihood ratios permit the best use of clinical test results to establish diagnoses for the individual patient. Examples and step-by-step calculations demonstrate the estimatio...
作者:Paul Vos , Karim Anaya-Izquierdo
来源:[J].Entropy(IF 1.347), 2014, Vol.16 (7), pp.4088-4100DOAJ
摘要:One dimensional exponential families on finite sample spaces are studied using the geometry of the simplex Δn°-1 and that of a transformation Vn-1 of its interior. This transformation is the natural parameter space associated with the family of multinomial distributions. The...
作者:Xu Steven Xu , Min Yuan , Haitao Yang ...
来源:[J].The AAPS Journal(IF 4.386), 2017, Vol.19 (1), pp.264-273Springer
摘要:... The likelihood ratio test (LRT) based on nonlinear mixed effect model fits is currently recommended for covariate identification, whereas individual empirical Bayesian estimates (EBEs) are considered unreliable due to the presence of shrinkage. The objectives of this research...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×