全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Todd Kemp
来源:[J].Journal of Theoretical Probability(IF 0.55), 2017, Vol.30 (2), pp.397-451Springer
摘要:This paper studies the empirical laws of eigenvalues and singular values for random matrices drawn from the heat kernel measures on the unitary groups \({\mathbb {U}}_N\) and the general linear groups \({\mathbb {GL}}_N\) , for \(N\in {\mathbb {N}}\) . It establishes the stronges...
作者:I. S. Kalinichenko , P. O. Kazinski
来源:[J].Russian Physics Journal(IF 0.408), 2017, Vol.59 (11), pp.1942-1947Springer
摘要:An original method for finding the nondiagonal values of the heat kernel associated with the wave operator Fourier-transformed in time is proposed for the case of a constant external electromagnetic field. The connection of the trace of such a heat kernel to the one-loop correcti...
作者:Pengjie Li , Huadong Ma , Anlong Ming
来源:[J].Multimedia Tools and Applications(IF 1.014), 2017, Vol.76 (7), pp.10207-10230Springer
摘要:... In this paper, we use Heat Kernel Signature (HKS) as the local features to represent non-rigid 3D models and further propose the retrieval method based on scale-invariant local features. Firstly, we extract key-points at multiple scales automatically. Then, the HKS local feat...
作者:Wei Lu , Xiaomin Yang , Xu Gou ...
来源:[J].International Journal of Parallel Programming(IF 0.404), 2018, Vol.46 (5), pp.943-962Springer
摘要:... Hence, we propose a new feature extraction approach for face representation based on heat kernel volume and local binary patterns. Multi-scale heat kernel faces are created in our proposed framework. We then reformulate these multi-scale heat kernel faces as three-dimension...
作者:Rudra P. Sarkar
来源:[J].Proceedings of the Indian Academy of Sciences - Mathematical Sciences(IF 0.191), 2002, Vol.112 (4), pp.579-593Springer
摘要:Abstract(#br)A theorem of Hardy characterizes the Gauss kernel (heat kernel of the Laplacian) on ℝ from estimates on the function and its Fourier transform. In this article we establish a full group version of the theorem for SL 2 (ℝ) which can accommodate functions with arb...
作者:Davide Barilari , Francesco Boarotto
来源:[J].Journal of Evolution Equations(IF 0.788), 2018, Vol.18 (3), pp.1115-1146Springer
摘要:Abstract(#br)We consider the heat equation associated with a class of hypoelliptic operators of Kolmogorov–Fokker–Planck type in dimension two. We explicitly compute the first meaningful coefficient of the small-time asymptotic expansion of the heat kernel on the diagona...
作者:Der-Chen Chang , Lüping Chen
来源:[J].The Journal of Geometric Analysis(IF 0.864), 2017, Vol.27 (4), pp.3285-3301Springer
摘要:This paper deals with the heat kernel for a two-parameter mixed type operator under a given geodesic connection. Here we present a special initial value condition and an adaptive algebraic method for finding the solution of the associated Hamilton’s system. We construct the ac...
作者:Swagato K. Ray , Rudra P. Sarkar
来源:[J].Proceedings of the Indian Academy of Sciences - Mathematical Sciences(IF 0.191), 2004, Vol.114 (2), pp.159-180Springer
摘要:... We establish a characterization of the heat kernel of the Laplace-Beltrami operator on X from integral estimates of the Cowling-Price type.
作者:Alexander Karabegov
来源:[J].Letters in Mathematical Physics(IF 2.415), 2017, Vol.107 (11), pp.2093-2145Springer
摘要:We give a heat kernel proof of the algebraic index theorem for deformation quantization with separation of variables on a pseudo-Kähler manifold. We use normalizations of the canonical trace density of a star product and of the characteristic classes involved in the index for...
作者:Evelina Shamarova , Alexandre B. Simas
来源:[J].Archiv der Mathematik(IF 0.376), 2017, Vol.108 (5), pp.485-494Springer
摘要:We approximate the heat kernel h ( x , y , t ) on a compact connected Riemannian manifold M without boundary uniformly in \((x,y,t)\in M\times M\times [a,b]\) , \(a>0\) , by n -fold integrals over \(M^n\) of the densities of Brownian bridges. Moreover, we provide an estimate for ...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×