全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Hugo W. Schneider , Taina Raiol , Marcelo M. Brigido ...
来源:[J].BMC Genomics(IF 4.397), 2017, Vol.18 (1)Springer
摘要:... Thus, we present a Support Vector Machine (SVM) based method to distinguish lncRNAs from PCTs, using features based on frequencies of nucleotide patterns and ORF lengths, in transcripts.
作者:Chun-Chi Chen , Xiaoning Qian , Byung-Jun Yoon
来源:[J].BMC Bioinformatics(IF 3.024), 2017, Vol.18 (14)Springer
摘要:Piwi-interacting RNAs (piRNAs) are a new class of small non-coding RNAs that are known to be associated with RNA silencing. The piRNAs play an important role in protecting the genome from invasive transposons in the germline. Recent studies have shown that piRNAs are linked to th...
作者:A K Sampath , N Gomathi
来源:[J].Sādhanā(IF 0.393), 2017, Vol.42 (9), pp.1513-1525Springer
摘要:... To resolve this problem, we propose a fuzzy-based multi-kernel spherical support vector machine. Initially, the input image is fed into the pre-processing step to acquire suitable images. Then, histogram of oriented gradient (HOG) descriptor is utilised for feature extraction...
作者:Jawad S. Alagha , Mohammed Seyam , Md Azlin Md Said ...
来源:[J].Hydrogeology Journal(IF 1.675), 2017, Vol.25 (8), pp.2347-2361Springer
摘要:... In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salin...
作者:Banafsheh Zahraie , Mohsen Nasseri , Fariborz Nematizadeh
来源:[J].Arabian Journal of Geosciences(IF 0.74), 2017, Vol.10 (19)Springer
摘要:In this paper, two data mining methods, support vector machine (SVM) and group method of data handling (GMDH), were used to identify spatiotemporal meteorological correlations, which can be used to forecast basin scale seasonal droughts. Standardized Precipitation Index (SPI) w...
作者:Neng-Sheng Pai , Jiun-Hao Hong , Pi-Yun Chen ...
来源:[J].Multimedia Tools and Applications(IF 1.014), 2017, Vol.76 (23), pp.25321-25342Springer
摘要:This paper describes the design of an image tracking system that combines Speeded Up Robust Features (SURF) and Tracking-Learning-Detection (TLD), with a posture recognition system that is based on the Support Vector Machine (SVM), and includes image tracking, foreground detectio...
作者:Barjinder Kaur , Dinesh Singh , Partha Pratim Roy
来源:[J].Multimedia Tools and Applications(IF 1.014), 2017, Vol.76 (24), pp.25581-25602Springer
摘要:... Hidden Markov Model (HMM) based temporal classifier and Support Vector Machine (SVM) for user identification system. A dataset of 2400 EEG signals while listening to music was collected from 60 users. User identification performance of 97.50 % and 93.83 % have been recorded w...
作者:Farzaneh Khorram , Amin Hossein Morshedy , Hossein Memarian ...
来源:[J].Arabian Journal of Geosciences(IF 0.74), 2017, Vol.10 (15)Springer
摘要:... The support vector machine (SVM) and Bayesian techniques were used for classification. The best classification accuracy was about 80 and 90% in limestone and dolomite rock samples, respectively. Then, a multi-layer perceptron (MLP) neural network was employed to predict c...
作者:Hu Mei , Yuan Zhou , Guizhao Liang ...
来源:[J].Chinese Science Bulletin(IF 1.319), 2005, Vol.50 (20), pp.2291-2296Springer
摘要:Abstract(#br)Support vector machine (SVM), partial least squares (PLS), and Back-Propagation artificial neural network (ANN) were employed to establish QSAR models of 2 dipeptide datasets. In order to validate predictive capabilities on external dataset of the resulting models, b...
作者:Sanghoon Jun , Namkug Kim , Joon Beom Seo ...
来源:[J].Journal of Digital Imaging(IF 1.1), 2017, Vol.30 (6), pp.761-771Springer
摘要:We propose the use of ensemble classifiers to overcome inter-scanner variations in the differentiation of regional disease patterns in high-resolution computed tomography (HRCT) images of diffuse interstitial lung disease patients obtained from different scanners. A total of...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×