全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:B. Achchab , A. Benjouad , M. El Fatini ...
来源:[J].Applied Mathematics and Computation(IF 1.349), 2011, Vol.218 (9), pp.5276-5291
摘要:Abstract(#br)We derive a robust residual a posteriori error estimator for time-dependent convection–diffusion–reaction problem, stabilized by subgrid viscosity in space and discretized by Crank–Nicolson scheme in time. The estimator yields upper bounds on the error whi...
作者:Mine A. Belenli , Songül Kaya , Leo G. Rebholz ...
来源:[J].International Journal of Computer Mathematics(IF 0.542), 2013, Vol.90 (7), pp.1506-1523
摘要:This paper studies a numerical scheme for approximating solutions of incompressible magnetohydrodynamic (MHD) equations that uses eddy viscosity stabilization only on the small scales of the fluid flow. This stabilization scheme for MHD equations uses a Galerkin finite element sp...
作者:Daniele A. Di Pietro
来源:[J].Comptes rendus - Mathématique(IF 0.477), 2010, Vol.349 (1), pp.93-98
摘要:Abstract(#br)In this work we propose a compact cell-centered Galerkin method with subgrid stabilization for anisotropic heterogeneous diffusion problems on general meshes. Both essential theoretical results and numerical validation are provided.
作者:J.-L. Guermond , A. Marra , L. Quartapelle
来源:[J].Computer Methods in Applied Mechanics and Engineering(IF 2.617), 2005, Vol.195 (44), pp.5857-5876
摘要:Abstract(#br)A subgrid stabilization technique is developed for solving the two-dimensional incompressible Navier–Stokes equations at high Reynolds numbers. The time marching algorithm is based on a well-established fractional-step pressure-correction projection method. The a...
作者:Kamel Nafa , Weimin Han
来源:[J].Advances in Numerical Analysis, 2016, Vol.2016
摘要:... Here, the coupled Stokes-Darcy problem is analyzed using equal-order velocity and pressure approximation combined with subgrid stabilization. We prove that the obtained finite element solution is stable and converges to the classical solution with optimal rates for both veloc...
作者:Yueqiang Shang
来源:[J].Journal of Computational Physics(IF 2.138), 2013, Vol.233, pp.210-226
摘要:Abstract(#br)Based on two-grid finite element discretization and a recent subgrid-scale model, a two-level subgrid stabilized Oseen iterative method for the convection dominated Navier–Stokes equations is proposed and analyzed. This method combines the best algorithmic feat...
作者:J.-L. Guermond
来源:[J].Computing and Visualization in Science, 1999, Vol.2 (2-3), pp.131-138
摘要:... The key idea is twofold, first it consists in introducing an approximation space that is broken up into resolved scales and subgrid scales so that the generator of the semi-group satisfies a uniform inf-sup condition with respect to this decomposition. Second, the Galerkin ap...
作者:Qihui Zhang , Yueqiang Shang
来源:[J].International Journal of Computational Methods(IF 0.481), 2020, Vol.17 (04), pp.24
摘要:An Oseen-type post-processed mixed finite element method based on a subgrid model is presented for the simulation of time-dependent incompressible Navier–Stokes equations. This method first solves a subgrid stabilized nonlinear Navier–Stokes system on a mesh of size H to...
作者:Oriol Guasch , Ramon Codina
来源:[J].Computer Methods in Applied Mechanics and Engineering(IF 2.617), 2013, Vol.261-262, pp.154-166
摘要:... In this paper we focus on the orthogonal subgrid scale (OSS) finite element method and make an analysis of the statistical behavior of its stabilization terms in the quasi static approximation. This is done by resorting to results from classical statistical fluid mechanics co...
作者:Camilo Andrés Bayona Roa , Joan Baiges , R Codina
来源:[J].International Journal of Numerical Methods for Heat & Fluid Flow(IF 1.093), 2016, Vol.26 (3/4), pp.1240-1271
摘要:... (#br)Design/methodology/approach(#br) – The orthogonal subgrid scales, the non-linear tracking of these subscales, and their time evolution are applied. Moreover, a systematic way to design the matrix of algorithmic parameters from the perspective of a Fourier analysis is...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×