全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Chao Ding , Lu Zhang , Mingsheng Liao ...
来源:[J].Remote Sensing of Environment(IF 5.103), 2020, Vol.236
摘要:... To address this issue, we propose an extended algorithm for the mature optical imagery cross-correlation (OICC) technique based on Landsat-8 (L8) and Sentinel-2 (S2) acquisitions. The main innovative points of this algorithm are: 1) the proposed pairing strategy for the OICC...
作者:S. Puliti , M. Hauglin , J. Breidenbach ...
来源:[J].Remote Sensing of Environment(IF 5.103), 2020, Vol.236
摘要:..., Sentinel-2). This study was performed over the entire land area of Norway north of 60° of latitude, and the Norwegian national forest inventory (NFI) was used as a source of field data composed of accurately geolocated field plots ( n =7710) systematically distributed a...
作者:Luigi Ranghetti , Mirco Boschetti , Francesco Nutini ...
来源:[J].Computers and Geosciences(IF 1.834), 2020
摘要:Abstract(#br)▪ is a scalable and flexible R package to enable downloading and preprocessing of Sentinel-2 satellite imagery via an accessible and easy to install interface. It allows the execution of several preprocessing steps which are commonly performed by Sentinel-2 user...
作者:Daniel Scheffler , David Frantz , Karl Segl
来源:[J].Remote Sensing of Environment(IF 5.103), 2020, Vol.241
摘要:... We simulated surface reflectance data of Landsat-8 and Sentinel-2A from airborne hyperspectral data to eliminate any sources of error originating from unequal acquisition geometries, illumination or atmospheric state. We evaluate different methods based on linear, quadratic a...
作者:Heikki Astola , Tuomas Häme , Laura Sirro ...
来源:[J].Remote Sensing of Environment(IF 5.103), 2019, Vol.223, pp.257-273
摘要:Abstract(#br)We compared the performance of Sentinel-2 and Landsat 8 data for forest variable prediction in the boreal forest of Southern Finland. We defined twelve modelling setups to train multivariable prediction models with either multilayer perceptron (MLP) or regression tr...
作者:Mariapaola Ambrosone , Alessandro Matese , Salvatore Filippo Di Gennaro ...
来源:[J].International Journal of Applied Earth Observations and Geoinformation(IF 2.176), 2020, Vol.89
摘要:... This study aims at improving soil water content estimation at high spatial and temporal resolution, by means of the Optical Trapezoid Model (OPTRAM) driven by Copernicus Sentinel-2 data. Two different model variations were considered, based on linear and nonlinear parameters...
作者:Xijia Zhou , Pengxin Wang , Kevin Tansey ...
来源:[J].Computers and Electronics in Agriculture(IF 1.766), 2020, Vol.168
摘要:... In this paper, a framework is proposed to obtain a ten-day interval multiyear VTCI at field scales, which is fused from Sentinel-2 data with a fine spatial resolution (20 m) and ten-day interval Terra MODIS data with a coarse spatial resolution using the Enhanced Spatial and ...
作者:Mingzheng Zhang , Wei Su , Yuting Fu ...
来源:[J].European Journal of Agronomy(IF 2.8), 2019, Vol.111
摘要:Abstract(#br)Sentinel-2 satellite is a new generation of multi-spectral remote sensing technique with high spatial, temporal and spectral resolution. Especially, Sentinel-2 incorporates three red-edge bands with central wavelength at 705, 740 and 783 nm, which are very sensitive ...
作者:Qunming Wang , Peter M. Atkinson
来源:[J].Remote Sensing of Environment(IF 5.103), 2018, Vol.204, pp.31-42
摘要:Abstract(#br)Sentinel-2 and Sentinel-3 are two newly launched satellites for global monitoring. The Sentinel-2 Multispectral Imager (MSI) and Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensors have very different spatial and temporal resolutions (Sentinel-2 MSI senso...
作者:A. Hornero , R. Hernández-Clemente , P.R.J. North ...
来源:[J].Remote Sensing of Environment(IF 5.103), 2020, Vol.236
摘要:... We developed a 3D-RTM approach to predict Xf infection incidence in olive orchards, integrating airborne hyperspectral imagery and freely available Sentinel-2 satellite data with radiative transfer modelling and field observations. Sentinel-2A time series data collected over ...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×