全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Ciprian Foias , Michael S. Jolly , Dan Lithio ...
来源:[J].Journal of Nonlinear Science(IF 1.566), 2017, Vol.27 (5), pp.1513-1529
摘要:The evolution of a determining form for the 2D Navier–Stokes equations (NSE) which is an ODE on a space of trajectories is completely described. It is proved that at every stage of its evolution, the solution is a convex combination of the initial trajectory and a chosen, fi...
作者:Marcelo F. de Almeida , Lucas C. F. Ferreira , Lidiane S. M. Lima
来源:[J].Mathematische Zeitschrift(IF 0.879), 2017, Vol.287 (3-4), pp.735-750
摘要:We prove global well-posedness for the Navier–Stokes–Coriolis system (NSC) in a critical space whose definition is based on Fourier transform, namely the Fourier–Besov–Morrey space \(\mathcal {FN}_{1,\mu ,\infty }^{\mu -1}\) with \(0<\mu <3\) . The smallness conditio...
作者:Mondher Benjemaa , Hela Louati , Mohamed Meslameni
来源:[J].Mediterranean Journal of Mathematics(IF 0.641), 2017, Vol.14 (3)
摘要:In this paper, we study the steady-state Navier–Stokes equations in \(\mathbb {R}^3\) . First, we establish the existence of very weak solution in \(\varvec{L}^p(\mathbb {R}^3)\) with \(3/2< p < +\infty \) under smallness conditions on the data. A uniqueness result is also ...
作者:Weifeng Zhao , Wen-An Yong
来源:[J].Journal of Computational and Applied Mathematics(IF 0.989), 2020, Vol.376
摘要:Abstract(#br)This paper is concerned with the stability of a discrete kinetic approximation with a boundary scheme introduced by the authors in a previous work. We prove the weighted L 2 -stability of the approximation by using an identity on three-point difference schemes for co...
作者:Zhigang Wu , Weike Wang
来源:[J].Archive for Rational Mechanics and Analysis(IF 2.292), 2017, Vol.226 (2), pp.587-638
摘要:The Cauchy problem of the bipolar Navier–Stokes–Poisson system (1.1) in dimension three is considered. We obtain the pointwise estimates of the time-asymptotic shape of the solution, which exhibit a generalized Huygens’ principle as the Navier–Stokes system. This phenom...
作者:Francisco Durango , Julia Novo
来源:[J].Journal of Computational and Applied Mathematics(IF 0.989), 2020, Vol.367
摘要:Abstract(#br)In this paper we derive a posteriori error estimates for inf–sup stable mixed finite element approximations to the evolutionary Navier–Stokes equations. We reduce the problem of getting a posteriori error estimations of a non-linear evolutionary problem to that...
作者:Cheng Yu
来源:[J].Archive for Rational Mechanics and Analysis(IF 2.292), 2017, Vol.225 (3), pp.1073-1087
摘要:In this paper, we prove the energy conservation for the weak solutions of the compressible Navier–Stokes equations for any time t > 0, under certain conditions. The results hold for the renormalized solutions of the equations with constant viscosities, as well as the weak s...
作者:Dongho Chae , Jörg Wolf
来源:[J].Archive for Rational Mechanics and Analysis(IF 2.292), 2017, Vol.225 (1), pp.549-572
摘要:We prove Liouville type theorems for the self-similar solutions to the Navier–Stokes equations. One of our results generalizes the previous ones by Nečas–Ru̇žička–Šverák and Tsai. Using a Liouville type theorem, we also remove a scenario of asymptotically self-sim...
作者:David Gérard-Varet , Christophe Lacave , Toan T. Nguyen ...
来源:[J].Journal de mathématiques pures et appliquées(IF 1.174), 2017
摘要:... We consider the two-dimensional incompressible Navier–Stokes equations with Navier slip boundary condition, in a domain whose boundaries exhibit fast oscillations in the form x 2 = ε 1 + α η ( x 1 / ε ) , α > 0 . Under suitable conditions on the oscillating parameter...
作者:Paolo Antonelli , Stefano Spirito
来源:[J].Archive for Rational Mechanics and Analysis(IF 2.292), 2017, Vol.225 (3), pp.1161-1199
摘要:In this paper we consider the Quantum Navier–Stokes system both in two and in three space dimensions and prove the global existence of finite energy weak solutions for large initial data. In particular, the notion of weak solutions is the standard one. This means that the vac...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×