全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Ming Li , Zhoushun Zheng , Kejia Pan
来源:[J].Advances in Difference Equations(IF 0.76), 2018, Vol.2018 (1), pp.1-14Springer
摘要:Abstract(#br)In this paper, we propose an extrapolation full multigrid (EXFMG) algorithm to solve the large linear system arising from a fourth-order compact difference discretization of two-dimensional (2D) convection diffusion equations. A bi-quartic Lagrange interpolation for ...
作者:Fazal Ghaffar , Noor Badshah , Saeed Islam ...
来源:[J].Advances in Difference Equations(IF 0.76), 2016, Vol.2016 (1), pp.1-16Springer
摘要:... Therefore, we propose a multigrid method based on high-order compact difference scheme on nonuniform grids. We will use interpolation and restriction operators developed by Ge and Cao (J. Comput. Phys. 230:4051-4070, 2011 ). The suggested scheme has up to fourth-order accurac...
作者:Christoph Reisinger , Julen Rotaetxe Arto
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.72 (1), pp.198-230Springer
摘要:... We then study the use of geometric, algebraic and aggregation-based multigrid preconditioners to solve the resulting discretised systems from implicit time stepping schemes efficiently. Finally, we illustrate the performance of these techniques numerically for benchmark t...
作者:Jörg Stiller
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.72 (1), pp.81-96Springer
摘要:A hybrid Schwarz/multigrid method for spectral element solvers to the Poisson equation in \(\mathbb {R}^2\) is presented. It extends the additive Schwarz method studied by Lottes and Fischer (J Sci Comput 24:45–78, 2005 ) by introducing nonuniform weight distributions based o...
作者:Haiwei Song , Yi Wang
来源:[J].Remote Sensing(IF 2.101), 2016, Vol.8 (4)DOAJ
摘要:The algebraic multigrid (AMG) method is used to solve linear systems of equations on a series of progressively coarser grids and has recently attracted significant attention for image segmentation due to its high efficiency and robustness. In this paper, a novel spectral-spatia...
作者:J P Singh
来源:[J].Sadhana(IF 0.393), 1995, Vol.20 (6), pp.887-914Springer
摘要:Abstract(#br)The paper describes the multigrid acceleration technique to compute numerical solutions of three equations of common fluid mechanical interest; Laplace equation, transonic full potential equation and Reynolds averaged Navier-Stokes equations. Starting with the si...
作者:J. Hawkes , G. Vaz , A.B. Phillips ...
来源:[J].Computer Physics Communications(IF 3.078), 2019, Vol.237, pp.26-36Elsevier
摘要:... State-of-the-art linear solvers, such as Krylov subspace or multigrid methods, provide excellent numerical performance for elliptic equations, but do not scale efficiently due to frequent synchronization between processes. Complete desynchronization is possible for basic, J...
作者:Strauss D. , Azevedo J. L. F.
来源:[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering(IF 0.234), 2003, Vol.25 (4), pp.315DOAJ
摘要:The paper describes the implementation details and validation results for an agglomeration multigrid procedure developed in the context of hybrid, unstructured grid solutions of aerodynamic flows. The governing equations are discretized using an unstructured grid finite volume me...
作者:Jannis Teunissen , Ute Ebert
来源:[J].Computer Physics Communications(IF 3.078), 2018Elsevier
摘要:... The framework comes with a geometric multigrid solver, shared-memory (OpenMP) parallelism and it supports output in Silo and VTK file formats. Afivo can be used to efficiently simulate AMR problems with up to about 1 0 8 unknowns on desktops, workstations or single compu...
作者:Fei Xu , Hehu Xie
来源:[J].Applications of Mathematics(IF 0.222), 2017, Vol.62 (3), pp.225-241Springer
摘要:A full multigrid finite element method is proposed for semilinear elliptic equations. The main idea is to transform the solution of the semilinear problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and s...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×