全部文献期刊会议图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Indranil Sarkar , Basudeb Mukhopadhyay
来源:[J].International Journal of Heat and Mass Transfer(IF 2.315), 2020, Vol.149
摘要:Abstract(#br)The research article theoretically deals with the three-phase-lag (TPL) heat conduction model of generalized thermoelasticity, reformulated in terms of the memory-dependent derivative (MDD). The energy theorem and the variational principle of this proposed model are ...
作者:Sakha M. , Eslami M.R
来源:[J].Applied Mathematical Modelling(IF 1.706), 2020, Vol.79, pp.402-413
摘要:Abstract(#br)In this paper, the generalized thermoelastic response of a beam subjected to a partial lateral thermal shock is analysed. The beam is made of homogeneous and isotropic material and is assumed to follow the Hooke law for its constitutive material. The displacement g...
作者:H.M. Youssef , Eman A. Al-Lehaibi
来源:[J].International Journal of Solids and Structures(IF 1.871), 2006, Vol.44 (5), pp.1550-1562
摘要:... The governing equations are taken in the context of the two-temperature generalized thermoelasticity theory [Youssef, H., 2005a. The dependence of the modulus of elasticity and the thermal conductivity on the reference temperature in generalized thermoelasticity for an in...
作者:Hamdy M. Youssef , Eman A. Al-Lehaibi
来源:[J].Applied Mathematics Letters(IF 1.501), 2010, Vol.23 (10), pp.1183-1187
摘要:Abstract(#br)Recently, Youssef constructed a new theory of fractional order generalized thermoelasticity by taking into account the theory of heat conduction in deformable bodies, which depends upon the idea of the Riemann–Liouville fractional integral operator. In this pap...
作者:Hany H. Sherief , Nasser M. El-Maghraby , Allam A. Allam
来源:[J].Applied Mathematical Modelling(IF 1.706), 2013, Vol.37 (3), pp.762-775
摘要:Abstract(#br)In this work, we consider the problem of a half space in the context of the theory of generalized thermoelasticity with one relaxation time. Realistically, the boundary conditions of the problem are considered to be stochastic. Laplace transform technique is used to ...
作者:Ya-Jun Yu , Wei Hu , Xiao-Geng Tian
来源:[J].International Journal of Engineering Science(IF 1.691), 2014, Vol.81, pp.123-134
摘要:Abstract(#br)In this work, by introducing memory-dependent derivative (MDD), instead of fractional calculus, into the Lord and Shulman (LS) generalized thermoelasticity, we establish a new memory-dependent LS model, which might be superior to fractional ones: firstly, the new m...
作者:Ashraf M. Zenkour , Ibrahim A. Abbas
来源:[J].International Journal of Mechanical Sciences(IF 1.613), 2014, Vol.84, pp.54-60
摘要:Abstract(#br)In this paper, the problem of generalized thermoelasticity with one relaxation time for an infinite annular cylinder of temperature dependent physical properties is discussed. Both the inner and outer curved surfaces of the cylinder are considered stress free. The in...
作者:Nantu Sarkar
来源:[J].Applied Mathematics and Computation(IF 1.349), 2013, Vol.219 (20), pp.10245-10252
摘要:Abstract(#br)The fundamental equations of the problem of generalized thermoelasticity with one relaxation time parameter including heat sources have been written in the form of a vector–matrix differential equation in the Laplace transform domain and then solved by the eigen...
作者:M.I.M. Copetti
来源:[J].Applied Mathematics and Computation(IF 1.349), 2011, Vol.218 (5), pp.2128-2145
摘要:Abstract(#br)In this work we study a one-dimensional contact problem in generalized thermoelasticity under the Green–Lindsay theory. Unilateral contact with an elastic obstacle is assumed. We consider the quasi-static and the fully dynamic situations. We prove existence and ...
作者:M.C. Leseduarte , R. Quintanilla , R. Racke
来源:[J].Applied Mathematics Letters(IF 1.501), 2017
摘要:Abstract(#br)We study solutions for the one-dimensional problem of the Green–Lindsay and the Lord–Shulman theories with two temperatures. First, existence and uniqueness of weakly regular solutions are obtained. Second, we prove the exponential stability in the Green–Li...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×