全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Wenjing Song , Hua Li , Ganshan Yang ...
来源:[J].Journal of Inequalities and Applications(IF 0.822), 2014, Vol.2014 (1), pp.1-15Springer
摘要:Abstract(#br)In this paper we introduce the ( I , J ) similar method for incompressible two-dimensional Euler equations, and obtain a series of explicit ( I , J ) similar solutions to the incompressible two-dimensional Euler equations. These solutions include all of the twin wave...
作者:Hee Chul Pak , Young Ja Park
来源:[J].Advances in Difference Equations(IF 0.76), 2013, Vol.2013 (1), pp.1-18Springer
摘要:Abstract(#br)The unique existence of a solution of the incompressible Euler equations in a critical Besov space [InlineEquation not available: see fulltext.] for [InlineEquation not available: see fulltext.] is investigated. The global existence of a solution of two-dimensional Euler equations...
作者:V. Rosa , C. J. Deschamps , J. P. L. C. Salazar ...
来源:[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering(IF 0.234), 2017, Vol.39 (6), pp.1859-1872Springer
摘要:... Two models are derived from the Lighthill Acoustic Analogy (LAA) and the other two use the Linearized Euler Equations (LEE) with added source terms. All models use input from a computational solution of the Reynolds-Averaged Navier–Stokes (RANS) equations and empirical ...
作者:Ricardo Costa , Stéphane Clain , Gaspar J. Machado ...
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.71 (3), pp.1375-1411Springer
摘要:We propose a sixth-order staggered finite volume scheme based on polynomial reconstructions to achieve high accurate numerical solutions for the incompressible Navier–Stokes and Euler equations. The scheme is equipped with a fixed-point algorithm with solution relaxation t...
作者:Praveen Chandrashekar , Markus Zenk
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.71 (3), pp.1062-1093Springer
摘要:We present a well-balanced nodal discontinuous Galerkin (DG) scheme for compressible Euler equations with gravity. The DG scheme makes use of discontinuous Lagrange basis functions supported at Gauss–Lobatto–Legendre (GLL) nodes together with GLL quadrature using the same no...
作者:Hongqiang Zhu , Jianxian Qiu , Jing-Mei Qiu
来源:[J].Journal of Scientific Computing(IF 1.71), 2017, Vol.73 (2-3), pp.1316-1337Springer
摘要:... (J Sci Comput 69:1346–1365, 2016 ) for the 1D Vlasov–Poisson system to the guiding center Vlasov model and the 2D time dependent incompressible Euler equations in the vorticity-stream function formulation. The main difficulty of this generalization lies in solving the ...
作者:Yinghui Zhang , Guochun Wu
来源:[J].Chinese Annals of Mathematics, Series B(IF 0.504), 2016, Vol.37 (6), pp.915-928Springer
摘要:Abstract(#br)The authors investigate the global existence and asymptotic behavior of classical solutions to the 3D non-isentropic compressible Euler equations with damping on a bounded domain with slip boundary condition. The global existence and uniqueness of classical solutions...
作者:Yongcai Geng , Yachun Li
来源:[J].Chinese Annals of Mathematics, Series B(IF 0.504), 2014, Vol.35 (2), pp.301-318Springer
摘要:Abstract(#br)The authors consider the local smooth solutions to the isentropic relativistic Euler equations in (3+1)-dimensional space-time for both non-vacuum and vacuum cases. The local existence is proved by symmetrizing the system and applying the Friedrichs-Lax-Kato theory o...
作者:Haitao Dong , Fujun Liu
来源:[J].Journal of Scientific Computing(IF 1.71), 2018, Vol.77 (2), pp.726-754Springer
摘要:Abstract(#br)Some problems of Euler equations have self-similar solutions which can be solved by more accurate method. The current paper proposes two new numerical methods for Euler equations with self-similar and quasi self-similar solutions respectively, which can use existing ...
作者:Zhiqiang Wei
来源:[J].Electronic Journal of Differential Equations(IF 0.426), 2013, Vol.2013 (146,), pp.1-18DOAJ
摘要:In this article, we establish the local well-posedness for density-dependent incompressible Euler equations in critical Besov spaces.

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×