全部文献期刊学位论文会议报纸专利标准年鉴图书|学者科研项目
中外文文献  中文文献  外文文献
作者:Dazhi Zhao , Maokang Luo
来源:[J].Calcolo(IF 0.8), 2017, Vol.54 (3), pp.903-917Springer
摘要:Fractional calculus is a powerful and effective tool for modelling nonlinear systems. In this paper, we introduce a class of new fractional derivative named general conformable fractional derivative (GCFD) to describe the physical world. The GCFD is generalized from the concept...
作者:Ercan Balcı , İlhan Öztürk , Senol Kartal
来源:[J].Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena(IF 1.246), 2019, Vol.123, pp.43-51Elsevier
摘要:Abstract(#br)In this paper, tumor-immune system interaction has been considered by two fractional order models. The first and the second model consist of system of fractional order differential equations with Caputo and conformable fractional derivative respectively. First of a...
作者:Qinghua Feng , Fanwei Meng
来源:[J].Advances in Difference Equations(IF 0.76), 2018, Vol.2018 (1), pp.1-20Springer
摘要:Abstract(#br)In this paper, we investigate oscillatory and asymptotic properties for a class of fractional order dynamic equations on time scales, where the fractional derivative is defined in the sense of the conformable fractional derivative. Based on the properties of conformable fractional...
作者:Wenyong Zhong , Lanfang Wang
来源:[J].Boundary Value Problems(IF 0.922), 2018, Vol.2018 (1), pp.1-12Springer
摘要:Abstract(#br)In this paper, we discuss the existence of positive solutions of the conformable fractional differential equation T α x ( t ) + f ( t , x ...
作者:Wenyong Zhong , Lanfang Wang
来源:[J].Advances in Difference Equations(IF 0.76), 2018, Vol.2018 (1), pp.1-14Springer
摘要:Abstract(#br)In this paper, we discuss the basic theory of the conformable fractional differential equation T α a x ( t ) = f ( t , x ( t ) ) , t ∈ [ a ...
作者:Xiaoyu Dong , Zhanbing Bai , Shuqin Zhang
来源:[J].Boundary Value Problems(IF 0.922), 2017, Vol.2017 (1), pp.1-15Springer
摘要:Abstract(#br)In this article, we consider the following boundary value problem of nonlinear fractional differential equation with p -Laplacian operator: D ...
作者:Kai Sheng , Wei Zhang , Zhanbing Bai
来源:[J].Boundary Value Problems(IF 0.922), 2018, Vol.2018 (1), pp.1-15Springer
摘要:Abstract(#br)In this article, we consider the following boundary-value problem of nonlinear fractional differential equation with p -Laplacian operator: D α ( ϕ p ( D α u ( t ) ) ) = f ( t , u ( t ) ) , t ∈ [ 0 , 1 ] T , u ( 0 ) = u ( σ ( 1 ) ) = D α...
作者:Altaf A. Al-Shawba , Farah A. Abdullah , Khaled A. Gepreel ...
来源:[J].Advances in Difference Equations(IF 0.76), 2018, Vol.2018 (1), pp.1-15Springer
摘要:...gif" Format="GIF" Rendition="HTML" Type="Linedraw"/> ( G ′ G , 1 G ) $( \frac{G'}{G},\frac{1}{G} ) $ -expansion method is applied to obtain new exact solutions with parameters of higher-dimensional nonlinear time-fractional differential equations (NTFDEs) in the sense of t...
作者:Sekson Sirisubtawee , Sanoe Koonprasert , Surattana Sungnul ...
来源:[J].Advances in Difference Equations(IF 0.76), 2019, Vol.2019 (1), pp.1-23Springer
摘要:... The main objective of this paper is to construct exact traveling wave solutions of the ( 2 + 1 ) $(2 + 1)$ -dimensional cubic–quintic Ginzburg–Landau equation and the Phi-4 equation of space-time fractional orders in the sense of the conformable fractional derivative...
作者:Mohamad Rafi Segi Rahmat
来源:[J].Advances in Difference Equations(IF 0.76), 2019, Vol.2019 (1), pp.1-16Springer
摘要:Abstract(#br)In this paper, a new kind of conformable fractional derivative on arbitrary time scales is introduced. The basic conformable derivative rules are proved. We introduce a new definition of exponential functions, and their potential uses in the definition of conformable...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×