马斯兰德出版社
期刊
会议
图书
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (02s)马斯兰德出版社
摘要:Using Jiang function we prove that for every positive integer K there exist infinitely many primes P such that each of P5+4n is prime.
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (02s)马斯兰德出版社
摘要:Using Jiang function we prove that for every positive integer K there exist infinitely many primes P such that each of P3+(2j)2 is prime.
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (9)马斯兰德出版社
摘要:Using Jiang function we prove for any k there are infinitely many primes P such that each of P3+ (2j ) 2 is a prime
作者:Jiang, Chunxuan
来源:[J].Report and Opinion, 2016, Vol.8 (5)马斯兰德出版社
摘要:Using Jiang function we prove Gaps Among Products of m Primes.
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (9)马斯兰德出版社
摘要:In this paper we study the factorization theorem of circulant determinants. We prove that Fermat equation is the subset of circulant determinant and every factor of n has a Fermat equation. On Oct. 25, 1991 without using any number theory we have proved Fermat last theorem.
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (9)马斯兰德出版社
摘要:Using Jiang function we prove for any k there are infinitely many primes P such that each of P3+ 4n (n= 1,... ,k )  is a prime.
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (02s)马斯兰德出版社
摘要:Using Jiang function we prove that P,P15+j(j+1)(j=1,…,12)contain no prime solutions.
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (9)马斯兰德出版社
摘要:Using Jiang function we prove for any k there are infinitely many primes P such that each of P5+j (j+1 ) is a prime.
作者:蒋春暄Jiang , Chunxuan
来源:[J].Academia Arena, 2016, Vol.8 (02s)马斯兰德出版社
摘要:Using Jiang function we prove that for every positive integer K there exist infinitely many primes P such that each of jP5+j+1 is prime.
作者:蒋春暄Jiang Chunxuan
来源:[J].Academia Arena, 2018, Vol.10 (2)马斯兰德出版社
摘要:中国的蒋春暄先生首先证明了“费马大定理”。

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×