欧几里得项目
期刊
会议
图书
作者:Ralph L. Cohen , Ib Madsen
来源:[J].Homology, Homotopy and Applications(IF 0.433), 2011, Vol.13 (2), pp.301-313Project Euclid
摘要:In this paper we present a new proof of the homological stabilityof the moduli space of closed surfaces in a simply connectedbackground space $K$, which we denote by $\mathscr{S}_g(K)$. Thehomology stability of surfaces in $K$ with an arbitrary number ofboundary components, $\mat...
作者:Ralph L. Cohen
来源:[J].Homology, Homotopy and Applications(IF 0.433), 2004, Vol.6 (1), pp.269-281Project Euclid
摘要:Let $M^n$ be a closed, connected $n$-manifold. Let $M^{-\tau}$ denote the Thomspectrum of its stable normal bundle. A well known theorem of Atiyah states that$M^{-\tau}$ is homotopy equivalent to the Spanier-Whitehead dual of $M$ with adisjoint basepoint, $M_+$. This dual can be ...
作者:Ralph L. Cohen , John R. Klein
来源:[J].Homology, Homotopy and Applications(IF 0.433), 2009, Vol.11 (1), pp.17-33Project Euclid
摘要:In this note, we study umkehr maps in generalized (co)homology theories arising from the Pontrjagin-Thom construction,from integrating along fibers, pushforward homomorphisms, and other similar constructions. We consider the basicproperties of these constructions and develop axio...
作者:Ralph L. Cohen , Inbar Klang
来源:[J].Tunisian Journal of Mathematics, 2020, Vol.2 (1), pp.147-196Project Euclid
摘要:In this paper we import the theory of “Calabi–Yau” algebras and categories from symplectic topology and topological field theories, to the setting of spectra in stable homotopy theory. Twistings in this theory will be particularly important. There will be two types of C...

我们正在为您处理中,这可能需要一些时间,请稍等。

资源合作:cnki.scholar@cnki.net, +86-10-82896619   意见反馈:scholar@cnki.net

×